skip to main content


Search for: All records

Creators/Authors contains: "Brown, Michael J. I."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We present new JWST NIRSpec integral field spectroscopy (IFS) data for the luminous infrared galaxy NGC 7469, a nearby (70.6 Mpc) active galaxy with a Seyfert 1.5 nucleus that drives a highly ionized gas outflow and a prominent nuclear star-forming ring. Using the superb sensitivity and high spatial resolution of the JWST instrument NIRSpec IFS, we investigate the role of the Seyfert nucleus in the excitation and dynamics of the circumnuclear gas. Our analysis focuses on the [Feii], H2, and hydrogen recombination lines that trace the radiation/shocked-excited molecular and ionized interstellar medium around the active galactic nucleus (AGN). We investigate gas excitation through H2/Brγand [Feii]/Paβemission line ratios and find that photoionization by the AGN dominates within the central 300 pc of the galaxy except in a small region that shows signatures of shock-heated gas; these shock-heated regions are likely associated with a compact radio jet. In addition, the velocity field and velocity dispersion maps reveal complex gas kinematics. Rotation is the dominant feature, but we also identify noncircular motions consistent with gas inflows as traced by the velocity residuals and the spiral pattern in the Paαvelocity dispersion map. The inflow is 2 orders of magnitude higher than the AGN accretion rate. The compact nuclear radio jet has enough power to drive the highly ionized outflow. This scenario suggests that the inflow and outflow are in a self-regulating feeding–feedback process, with a contribution from the radio jet helping to drive the outflow.

     
    more » « less
  2. Abstract

    We have used the Mid-InfraRed Instrument (MIRI) on the James Webb Space Telescope (JWST) to obtain the first spatially resolved, mid-infrared images ofIIZw096, a merging luminous infrared galaxy (LIRG) atz= 0.036. Previous observations with the Spitzer Space Telescope suggested that the vast majority of the total IR luminosity (LIR) of the system originated from a small region outside of the two merging nuclei. New observations with JWST/MIRI now allow an accurate measurement of the location and luminosity density of the source that is responsible for the bulk of the IR emission. We estimate that 40%–70% of the IR bolometric luminosity, or 3–5 × 1011L, arises from a source no larger than 175 pc in radius, suggesting a luminosity density of at least 3–5 × 1012Lkpc−2. In addition, we detect 11 other star-forming sources, five of which were previously unknown. The MIRI F1500W/F560W colors of most of these sources, including the source responsible for the bulk of the far-IR emission, are much redder than the nuclei of local LIRGs. These observations reveal the power of JWST to disentangle the complex regions at the hearts of merging, dusty galaxies.

     
    more » « less
  3. Abstract

    The nearby, luminous infrared galaxy NGC 7469 hosts a Seyfert nucleus with a circumnuclear star-forming ring and is thus the ideal local laboratory for investigating the starburst–AGN (active galactic nucleus) connection in detail. We present integral-field observations of the central 1.3 kpc region in NGC 7469 obtained with the JWST Mid-InfraRed Instrument. Molecular and ionized gas distributions and kinematics at a resolution of ∼100 pc over the 4.9–7.6μm region are examined to study the gas dynamics influenced by the central AGN. The low-ionization [Feii]λ5.34μm and [Arii]λ6.99μm lines are bright on the nucleus and in the starburst ring, as opposed to H2S(5)λ6.91μm, which is strongly peaked at the center and surrounding ISM. The high-ionization [Mgv] line is resolved and shows a broad, blueshifted component associated with the outflow. It has a nearly face-on geometry that is strongly peaked on the nucleus, where it reaches a maximum velocity of −650 km s−1, and extends about 400 pc to the east. Regions of enhanced velocity dispersion in H2and [Feii] ∼ 180 pc from the AGN that also show highL(H2)/L(PAH) andL([Feii])/L(Pfα) ratios to the W and N of the nucleus pinpoint regions where the ionized outflow is depositing energy, via shocks, into the dense interstellar medium between the nucleus and the starburst ring. These resolved mid-infrared observations of the nuclear gas dynamics demonstrate the power of JWST and its high-sensitivity integral-field spectroscopic capability to resolve feedback processes around supermassive black holes in the dusty cores of nearby luminous infrared galaxies.

     
    more » « less
  4. Abstract

    Optical surveys, such as the MACHO project, often uncover variable stars whose classification requires follow‐up observations by other instruments. We performed X‐ray spectroscopy and photometry of the unusual variable star MACHO 311.37557.169 withXMM‐Newtonin April 2018, supplemented by archival X‐ray and optical spectrographic data. The star has a bolometric X‐ray luminosity of about 1 × 1032 erg s−1 cm−2and a heavily absorbed two‐temperature plasma spectrum. The shape of its light curve, its overall brightness, its X‐ray spectrum, and the emission lines in its optical spectrum suggest that it is most likely a VY Scl cataclysmic variable.

     
    more » « less